Big Data: Challenges and Some Solutions
Stratosphere, Apache Flink, and Beyond

Volker Markl
http://www.user.tu-berlin.de/marklv/
http://www.dima.tu-berlin.de
http://www.dfki.de/web/forschung/iam
http://bbdc.berlin

volker.markl@tu-berlin.de
Thanks to my team members and students

- Dr. Stephan Ewen
- Sebastian Schelter
- Dr. Kostas Tzoumas
- Dr. Asterios Katsifodimos
- Fabian Hüske
- Alexander Alexandrov
- Max Heimel

and many more members of the Stratosphere Project, the Berlin Big Data Center, and the Apache Flink community
Data & Analysis: Increasingly Complex!

Data

- Data volume too large
- Data rate too fast
- Data too uncertain

Analysis

- Volume
- Velocity
- Variability

- Reporting
- Ad-Hoc Queries
- ETL/ELT
- aggregation, selection
- SQL, XQuery
- MapReduce

- Data Mining
- Predictive/Prescriptive
- MATLAB, R, Python
- MATLAB, R, Python

Data & Analysis: Increasingly Complex!
“Data Scientist” – “Jack of All Trades!”

Domain Expertise (e.g., Industry 4.0, Medicine, Physics, Engineering, Energy, Logistics)
Mathematical Programming
Linear Algebra
Stochastic Gradient Descent
Error Estimation
Active Sampling
Regression
Monte Carlo
Statistics
Sketches
Hashing
Convergence
Decoupling
Iterative Algorithms
Curse of Dimensionality

Application

Data Science

Data Analysis

Scalable Data Management

Relational Algebra / SQL
Data Warehouse/OLAP
NF²/XQuery
Resource Management
Hardware Adaptation
Fault Tolerance
Memory Management
Parallelization
Scalability
Memory Hierarchy
Data Analysis Language
Compiler
Query Optimization
Indexing
Data Flow
Control Flow
Real-Time

New Technology to the Rescue!

© Volker Markl
A Zoo of Technologies!

http://mattturck.com/wp-content/uploads/2016/03/Big-Data-Landscape-2016-v18-FINAL.png
Big Data Analytics Requires Systems Programming

Data Analysis
Statistics
Algebra
Optimization
Machine Learning
NLP
Signal Processing
Image Analysis
Audio-, Video Analysis
Information Integration
Information Extraction
Data Value Chain
Data Analysis Process
Predictive Analytics

R/Matlab:
4 million users

Hadoop:
200,000 users

“We will soon have a huge skills shortage for data-related jobs.”
Neelie Kroes (ICT 2013, Nov. 7, Vilnius)

Big Data is now where database systems were in the 70s (prior to relational algebra, query optimization and a SQL-standard)!

Declarative languages to the rescue!

© Volker Markl
Deep Analysis of „Big Data“ is Key!

Many new companies and products are emerging to enable deep big data analysis; strong European contenders include Apache Flink, Parstream, and Exasol. „New companies“ are the (b)leading users of these technologies, e.g., in the information economy (e.g., Zalando, Amazon, Researchgate, Soundcloud, Spotify). „Traditional Big companies“ are following and still determining strategies (Industrie 4.0, Logistics, Telco, etc.). Most SMEs are not ready yet to capitalize on Big Data.
Machine Learning + Data Management = X

Mathematical Programming
- Linear Algebra
- Error Estimation
- Active Sampling
- Regression Monte Carlo

Feature Engineering
- Representation Algorithms (SVM, GPs, etc.)
- Statistic
- Sketches
- Hashing
- Isolation
- Convergence
- Curse of Dimensionality
- Iterative Algorithms
- Control flow

Think ML-algorithms in a scalable way
- declarative

Process iterative algorithms in a scalable way

Goal: Data Analysis without System Programming!

Technology X

Relational Algebra/SQL
- Data Warehouse/OLAP
- NF²/XQuery
- Scalability
- Hardware adaption
- Fault Tolerance
- Resource Management

Declarative Languages
- Automatic Adaption
- Scalable processing

Parallelization
- Compiler
- Memory Management
- Memory Hierarchy
- Data Analysis Language
- Query Optimization
- Dataflow
- Indexing
Agenda

• On Stratosphere and Flink
 – Conception, Initial Contributions
 – Streaming Data Analysis
 – The Flink Community

• On Roman Generals and Big Data Analytics

• On Emma and Mosaics
Stratosphere: General Purpose Programming + Database Execution

Draws on
Database Technology

- Relational Algebra
- Declarativity
- Query Optimization
- Robust Out-of-core

Adds

- Iterations
- Advanced Dataflows
- General APIs
- Native Streaming

Draws on
MapReduce Technology

- Scalability
- User-defined Functions
- Complex Data Types
- Schema on Read

What is Apache Flink?

Apache Flink® is an open-source stream processing framework for distributed, high-performing, always-available, and accurate data streaming applications.

- **Key Features:**
 - Bounded and unbounded data
 - Event time semantics
 - Stateful and fault-tolerant
 - Running on thousands of nodes with very good throughput and latency
 - Exactly-once semantics for stateful computations.
 - Flexible windowing based on time, count, or sessions in addition to data-driven windows

- **DataSet** and **DataStream** programming abstractions are the foundation for user programs and higher layers

Diagram

<table>
<thead>
<tr>
<th>Core</th>
<th>CEP Event Processing</th>
<th>Table Relational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deploy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APIs & Libraries</td>
<td>DataStream API</td>
<td>DataSet API</td>
</tr>
<tr>
<td></td>
<td>Stream Processing</td>
<td>Batch Processing</td>
</tr>
<tr>
<td>Runtime</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distributed Streaming Dataflow</td>
<td></td>
</tr>
<tr>
<td>Local Deploy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single JVM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cluster Deploy</td>
<td>FlinkML Machine Learning</td>
<td>Gelly Graph Processing</td>
</tr>
<tr>
<td>Standalone, YARN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloud Deploy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCE, EC2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://flink.apache.org
case class Path (from: Long, to: Long)
val tc = edges.iterate(10) {
 paths: DataSet[Path] =>
 val next = paths
 .join(edges)
 .where("to")
 .equalTo("from") {
 (path, edge) =>
 Path(path.from, edge.to)
 }
 .union(paths)
 .distinct()
 next
}

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, K. Tzoumas:
Effect of optimization

Plan A
- Execution Plan A
- Run on a sample on the laptop

Plan B
- Execution Plan B
- Run on large files on the cluster

Plan C
- Execution Plan C
- Run a month later after the data evolved

Hash vs. Sort
Partition vs. Broadcast
Caching
Reusing partition/sort
Why optimization?

Do you want to hand-tune that?

F. Hueske, M. Peters, A. Krettek, M. Ringwald, K. Tzoumas, V. Markl, J.C. Freytag: Peeking into the optimization of data flow programs with MapReduce-style UDFs. ICDE 2013: 1292-1295
S. Ewen, K. Tzoumas, M. Kaufmann, V. Markl:

ITERATIONS IN DATA FLOWS
⇒ MACHINE LEARNING ALGORITHMS
Iterate by looping

- for/while loop in client submits one job per iteration step
- Data reuse by caching in memory and/or disk
Iterate in the Dataflow
Large-Scale Machine Learning

Factorizing a matrix with 28 billion ratings for recommendations

Optimizing iterative programs

Pushing work „out of the loop“

Caching Loop-invariant Data

Maintain state as index
STATE IN ITERATIONS

→ GRAPHS AND MACHINE LEARNING
Iterate natively with deltas

initial workset -> workset -> A -> B -> workset
initial solution -> partial solution -> X -> Y -> delta set
other datasets -> Merge deltas

Replace

iteration result
Effect of delta iterations...
... very fast graph analysis

Performance competitive with dedicated graph analysis systems

... and mix and match ETL-style and graph analysis in one program

“STREAMING DATA” ANALYSIS
Bounded and unbounded data

• Bounded data: a dataset with a natural beginning and end
 – E.g., current position of all trucks in a fleet, content of a data warehouse

• Unbounded data: a dataset without a natural beginning and end
 – E.g., customers of our products, tweets about our product

• Note: few data is bounded by nature; most bounded data is a view over unbounded data

By courtesy of Kostas Tzoumas
Stream and batch processing

• Stream processing: continuous processing that continuously produces results
 – E.g., a Java program that connects to a socket and parses the socket contents
 – Apache Flink, Apache Storm

• Batch processing: processing that takes finite time to complete and produces results only in the end
 – E.g., sorting a file
 – Apache Hadoop MapReduce, Apache Spark

By courtesy of Kostas Tzoumas
How do they fit together

• Batch processing over bounded data
 – Natural

• Stream processing over bounded data
 – Treats bounded data as subset of stream

• Batch processing over unbounded data
 – Needs a pre-processing stream processing phase that splits stream into chunks

• Stream processing over unbounded data
 – Natural

By courtesy of Kostas Tzoumas
A different view

• What changes faster? Your code or your data?

• \(\frac{d\text{data}}{dt} \gg \frac{d\text{code}}{dt} \) is a data streaming problem

• \(\frac{d\text{code}}{dt} \gg \frac{d\text{data}}{dt} \) is a data exploration problem (and likely to become a data streaming problem later)

Credits Joe Hellerstein
Defining windows in Flink

• Trigger policy
 – When to trigger the computation on current window

• Eviction policy
 – When data points should leave the window
 – Defines window width/size

• E.g., count-based policy
 – evict when #elements > n
 – start a new window every n-th element

• Built-in: Count, Time, Delta policies
Checkpointing / Recovery

• Flink acknowledges batches of records
 – Less overhead in failure-free case
 – Currently tied to fault tolerant data sources (e.g., Kafka)

• Flink operators can keep state
 – State is checkpointed
 – Checkpointing and record acks go together

• Exactly one semantics for state
Checkpointing / Recovery

Pushes checkpoint barriers through the data flow

After barrier = Not in snapshot
Before barrier = part of the snapshot
(backup till next snapshot)

Chandy-Lamport Algorithm for consistent asynchronous distributed snapshots
Some Benchmark Results

Initially performed by Yahoo! Engineering, Dec 16, 2015,

[..]Storm 0.10.0, 0.11.0-SNAPSHOT and Flink 0.10.1 show sub-second latencies at relatively high throughputs[..]. Spark streaming 1.5.1 supports high throughputs, but at a relatively higher latency.

THE FLINK COMMUNITY
Flink Community as of Today

- **Members**: 18,884
- **Contributors**: 313
- **Meetups**: 41
- **Cities**: 30
- **Countries**: 15

Contributors over time:

- **Feb 09**: 50
- **Jun 10**: 243
- **Nov 11**: 376
- **Mrz 13**: 365
- **Jul 14**: 1,393
- **Dez 15**: 541
- **Apr 17**: 452

Locations:

- **North America**: 10,659
- **Europe**: 678
- **Asia**: 959
- **Australia**: 314
- **Other**: 479
Some Highly Engaged Users

Largest job has > 20 operators, runs on > 5000 vCores in 1000-node cluster, processes millions of events per second

Complex jobs of > 30 operators running 24/7, processing 30 billion events daily, maintaining state of 100s of GB with exactly-once guarantees

30 Flink applications in production for more than one year. 10 billion events (2TB) processed daily

By courtesy of Kostas Tzoumas
Other Companies in the Flink Community

[Logos of various companies]

https://flink.apache.org/poweredby.html
Some Software Projects Using Flink

Apache Flink is a replacement for MapReduce to support large-scale batch workloads and streaming data flows. It eliminates the concept of mapping and reducers and leverages in-memory storage, resulting in significant performance gains over MapReduce.

Apache SAMOA is a distributed streaming machine learning (ML) framework that contains a programming abstraction for distributed streaming ML algorithms.

The Apache Mahout™ project’s goal is to build an environment for quickly creating scalable performant machine learning applications.

MRQL is a query processing and optimization system for large-scale, distributed data analysis, built on top of Apache Hadoop, Hama, Spark, and Flink.

Apache Beam is an open source, unified programming model that you can use to create a data processing pipeline.
Flink in the ecosystem

By courtesy of Kostas Tzoumas
Timeline of Flink

2008
Initial vision for a big data analytics platform

2009
DFG Proposal for Stratosphere I

2010
Grant Award Start of Stratosphere I

2012
Spinning Fast Iterative Dataflows paper published

2014
The VLDB Journal paper published

2015
Flink Forward Conference in Berlin

2016
Flink 1.0

2017
> 30 Companies using Flink

2018
Flink Forward 2nd Flink Forward Conference September 2016

© Volker Markl
Evolution of Big Data Platforms

First Generation
Data Warehouses, e.g., relational DBMS

Second Generation
Scale-out, Map/Reduce, UDFs, e.g., Apache Hadoop

Third Generation
In-memory Performance and Improved Programming Model, e.g. Apache Spark

Fourth Generation
In-memory + Out of Core Performance, Declarativity, Optimization of Iterative Algorithms, True Streaming e.g. Apache Flink
Fault tolerance

Pessimistic Recovery:
- Write intermediate state to stable storage
- Restart from such a checkpoint in case of a failure

Problematic:
- High overhead, checkpoint must be replicated to other machines
- Overhead always incurred, even if no failures happen!

➢ How can we avoid this overhead in failure-free cases
Optimistic recovery

- Many data mining algorithms are **fixpoint algorithms**
- Optimistic Recovery: jump to a different state in case of a failure, still converge to solution
 - No checkpoints \(\rightarrow\) **No overhead in absense of failures!**
 - algorithm-specific **compensation function** must restore state

S. Schelter, S. Ewen, K. Tzoumas, V. Markl: "All roads lead to Rome": optimistic recovery for distributed iterative data processing. *CIKM 2013*
Declarative Data Processing and Mosaics
A Billion $$$ Mantra...

Declarative Data Processing

An effective, formal foundation based on relational algebra and calculus (Codd ’71).

A simple, high-level language for querying data (Chamberlin ’74).

An efficient, low-level execution environment tailored towards the data (Selinger ’79).
With 40+ years of success...

Declarative Data Processing
Fine grained parallelism through deep language embedding (EMMA)

Emma Source (backed by Scala AST)

(i) Lifting

Emma Core (backed by Scala AST)

(iii) Lowering

Target Language + Runtime

Programming Abstractions

Common Concrete Syntax
(realized as Scala eDSL)

Common Abstract Syntax

e.g. Spark, Flink, MM Engine

Mosaics

Frontend:

Backends:
Research

1. Unifying Modelling Across Theories
2. Cross Theory Optimization

3. Optimizing Across Engines
4. Predicting and Learning Program Runtimes

5. Optimizing Across Hardware
6. Generating Hardware-Targeted Code
The Five Dimensions of Big Data

- Law
 - Ownership
 - Copyright/IPR
 - Liability
 - Insolvency
 - Privacy

- Application
 - Systems
 - Frameworks
 - Skills
 - Best-Practices
 - Tools

- Society
 - User Behaviour
 - Social Processes
 - Collaboration
 - Political Processes
 - Public Good

- Economy
 - Business Models
 - Benchmarking
 - Open Source & Open Data
 - Deployment Models
 - Information Pricing
 - Information Marketplaces

- Technology
 - Data Management
 - Data Processing
 - Statistics/ML
 - Linguistics/Text&Speech
 - HCI/Visualization
 - Novel Computer Architectures
 - Security
Acknowledgements

I would like to thank the members of the Stratosphere project, the Berlin Big Data Center, and my national and international collaborators. In particular, I would like to thank my former and current students and postdocs at DIMA/TU Berlin and DFKI. Without them it would not have been possible to realize the visions into concrete software system artifacts. Last, but not least, I would like to thank all of the contributors and users in the Apache Flink community, without them the Stratosphere project and the correlated research of the Berlin Big Data Center would not have achieved the worldwide impact that we have experienced over the last few years.